Bài 2. Phương trình lượng giác cơ bản

1. Phương trình $\sin x = a$ (1)

* $\left| a \right| > 1$: phương trình (1) vô nghiệm.

* $\left| a \right| \le 1$: gọi $\alpha $ là một cung thỏa mãn $\sin \alpha  = a$. Khi đó phương trình (1) có các nghiệm là:

$x = \alpha  + k2\pi ,k \in Z$

Và $x = \pi  - \alpha  + k2\pi ,k \in Z$

Nếu $\alpha $ thỏa mãn điều kiện $ - \frac{\pi }{2} \le \alpha  \le \frac{\pi }{2}$ và $\sin \alpha  = a$ thì ta viết $\alpha  = \arcsin \alpha $.

Khi đó các nghiệm của phương trình (1) là:

$x = \arcsin \alpha  + k2\pi ,k \in Z$

Và $x = \pi  - \arcsin \alpha  + k2\pi ,k \in Z$.

Phương trình $\sin x = \sin {\beta ^o}$ có các nghiệm là:

$x = {\beta ^o} + k{360^o},k \in Z$

Và $x = {180^o} - {\beta ^o} + k{360^o},k \in Z$.

2. Phương trình $\cos x = a$ (2)

* $\left| a \right| > 1$:  phương trình (2) vô nghiệm.

* $\left| a \right| \le 1$: gọi $\alpha $ là một cung thỏa mãn $\cos \alpha  = a$. Khi đó phương trình (2) có nghiệm là:

$x =  \pm \alpha  + k2\pi ,k \in Z$

Nếu $\alpha $ thỏa mãn điều kiện $0 \le \alpha  \le \pi $ và $\cos \alpha  = a$ thì ta viết $\alpha  = \arccos \alpha $.

Khi đó nghiệm của phương trình (2) là:

$x =  \pm \arcsin \alpha  + k2\pi ,k \in Z$

Phương trình $\cos x = \cos {\beta ^o}$ có nghiệm là:

$x =  \pm {\beta ^o} + k{360^o},k \in Z$

3. Phương trình $\tan x = a$ (3)

Điều kiện của phương trình (3): $x \ne \frac{\pi }{2} + k\pi ,k \in Z$

Nếu $\alpha $ thỏa mãn điều kiện $ - \frac{\pi }{2} < \alpha  < \frac{\pi }{2}$ và $\tan \alpha  = a$ thì ta viết $\alpha  = \arctan \alpha $.

Lúc đó nghiệm của phương trình (3) là:

$x = \arctan \alpha  + k\pi ,k \in Z$

Phương trình $\tan x = \tan {\beta ^o}$ có nghiệm là:

$x = {\beta ^o} + k{180^o},k \in Z$

4. Phương trình $\cot x = a$ (4)

Điều kiện của phương trình (4): $x \ne k\pi ,k \in Z$

Nếu  $\alpha $ thỏa mãn điều kiện $0 < \alpha  < \pi $ và $\cot \alpha  = a$ thì ta viết $\alpha  = {\mathop{\rm arccot}\nolimits} \alpha $.

Lúc đó nghiệm của phương trình (4) là:

$x = {\mathop{\rm arc}\nolimits} \cot \alpha  + k\pi ,k \in Z$

Phương trình $\cot x = \cot {\beta ^o}$ có nghiệm là:

$x = {\beta ^o} + k{180^o},k \in Z$