Bài 1. Căn bậc hai
1. Căn bậc hai số học
* Định nghĩa
Với số dương $a$, số $\sqrt a $ được gọi là căn bậc hai số học của $a.$
Số 0 cũng được gọi là căn bậc hai số học của $0.$
* Chú ý:
Với $a \ge 0$ ta có:
- Nếu $x = \sqrt a $ thì $x \ge 0$ và ${x^2} = a;$
- Nếu $x \ge 0$ và ${x^2} = a$ thì $x = \sqrt a .$
Ta viết:
$x = \sqrt a \Leftrightarrow \left\{ \begin{array}{l} x \ge 0\\ {x^2} = a \end{array} \right.$Ví dụ:
a) Căn bậc hai số học của 25 là $\sqrt {25} = 5$, vì $5>0$ và ${5^2} = 25.$
b) Căn bậc hai số học của 49 là $\sqrt {49} = 7$, vì $7>0$ và ${7^2} = 49.$
2. So sánh các căn bậc hai số học
* Định lí
Với hai số $a$ và $b$ không âm, ta có:
$a < b \Leftrightarrow \sqrt a < \sqrt b .$
Ví dụ:
a) So sánh $4$ và $\sqrt {15} $
Ta có:
$16 > 15$ nên $\sqrt {16} > \sqrt {15} $. Vậy $4 > \sqrt {15} .$
b) So sánh $3$ và $\sqrt {11} $
Ta có:
$9 < 11$ nên $\sqrt {9} < \sqrt {11} $. Vậy $3 < \sqrt {11} .$
c) Tìm số $x$ không âm biết $\sqrt {x} < 3$
Ta có:
$\sqrt {9} = 3$nên $\sqrt {x} < 3$ có nghĩa là $\sqrt {x} < \sqrt {9} $.Vì $x \geq0$ nên $ \sqrt{x}< \sqrt{9} \Leftrightarrow x<9.$
Vậy $x<9.$